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ABSTRACT

Since the launch of the first civilian earth-observing satellite in 1972,
satellite remote sensing has provided increasingly sophisticated information
on the structure and function of forested ecosystems. Forest classification
and mapping, common uses of satellite Jata, have improvec over the vyears as a
result of more discrimirating sensors, hetter classification algorithms, and
the use of geographic information systems to incorporate additional spatially
referenced data such as topography. Land-use change, including conversion of
forests for urban or agricultural development, can now be detected and rates
of change calculated by superimposing satellite images taken at different
dates. Landscape ecological questions recarding landscape pattern and the
variables controlling observed patterns can be addressed using satellite
imagery as can forestry and ecological questions regarding spatial variations
in physiological characteristics, proauctivity, successional patterns, forest

structure, and forest decline.
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TNTRODUCTION

Since the launching of the first earth-observing civilian Landsat
satellite in 1972, satellite remote sensing has been used for gathering
synoptic information on forests. In the early years, satellite data were
used mostly by geographers to create maps of forest types. These early
efforts relied almost entirely on satellite-collected digital spectral data
with no integration of ground-based digital information such as topography.
More recently, ecologists have joined the geographers in utilizing satellite
technology for a variety of forest-related applications which will be
reviewed in this paper: detecting landscape change over time, relating
landscape patterns to biclogical or physical phenomena, evaluating
physiological processes of forest canopies, and quantifying forest cover,
biomass, or productivity over varying scales of spatial resolution.

The sophistication of applications evident in recent years has been made
possible by 1) the use of more spectrally and/or spatially discriminating
sensors, 2) the improvement of hardware and software systems designed to
process spatially-referenced digital data, and 3) the increased availability,
standardization, and compatibility of other spatially-referenced digital data
sets such as digital topographic variables generated from digital elevation
models. The most ccmmon sources of satellite data relevant to forests are the
U.S. Landsat Thematic Mapper (TM), the U.S. Landsat Multispectral Scanner
{MSS), the U.S. Zivanced 2ry Hich Fesolution Radicrneter (AVIRR), and the
French Cysteme Prohatcive 'Slservaticn de e Terre (SPCT). The upectral
characteristicz and spatial resolution of data fran these uensors are
portrayed in Fig. 1 znd cempared to the electromagnetic upectrim typically

found in green vegetation. More (etails on 2ach sensor's characteristics can



be found elisewhere (e.g., Billingsley 1984, Greegor 1986). Several other

sensors have been used in forest-related applications but much less
frequently; for example, the Scanning Multichannel Microwave Radiometer
(SMR) to monitor vegetation in semiarid regions (Choudhury and Tucker 1987)
or for assessing global primary productivity (Choudhury 1988) and radar data
for detecting forest charge (Lee and Hoffer 1288, Stone and Woodwell 1988).
Several sophisticated airborne sensors are capable of detectirng a great deal
of ecological information on forests, ut are beyond the scope of this paper.
Sensors on the recently launched Japanese satellite and the Russian satellite
are also useful in forest applications although their full potential is
untested.

Current trends in ecological studies have dictated the integration of
remotely sensed digital spectral data into geographic information systems
(GIS). This merger moves satellite spectral data beyond standard image
processing and permits the use of remotely sensed spectral data in
conjunction with such other spatially referenced digital data as elevation,
slope aspect, vegetation type, and soils. In this way, information about a
landscape can be enriched beyond what is possible by the separate systems
(Logan and Bryant 1987). The integration of image precessing systems and
multilayered spectral data (zs provided by satellite sensors) with GIS and
digital geographic databases allcis for the development of more sophisticated

models of landscape-scale varizbles such as regional forest ccver (Iverson et

289, .
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The objective of this T3per is to reviaw ways in which satellite remote
sensing can te useful in delireating strmetural and functional

characteristice of forests = = ‘7Ariety of geeqraphical scales. We focus on



the following uses of satellite imagery: 1) classification and mapping of

forest types, 2) detection of areal change in forestland due to clearing or
reforestation, 3) determination of patch disappearance and compositional
change during succession, 4) assessment of forest structure (basal area,
bicnass, leaf area incex, density, crown closure), 5) determination of damage
or forest decline, 6) assessment of physiological processes, and 7)

assessment of forest cover and productivity,

APPLICATIONS OF REMOTELY-SENSED DATA TO FORESTS
Mapping of forest types

Using satellite data to classify and map various forest and/or land-use
types has historically been, and still is, the most frequent use of
satellite data. Pixels are classified according to their ground reflectance
values as measured by the satellites. The desired map is created by
displaying the classified pizels in their appropriate geographic context. Two
types of classification procedures may be followed to create a forest type
map from a satellite image (Colwell 1983, Lillesand and Kiefer 1987). In
unsupervised classification, computer algorithms are used to examine the
spectral data of the entire scere and to clump pirels with like spectral
properties into common classes according to the specific clustering algorithm
used. The classes are :independent 7 any fugriori assunptizns as to what
ground cover *hey actually represent. Aftar the Ciszzes ara generated, the
operator assigns rmeaning o e nlacses (L, Itttz classes to
landcover t mes) or the asis of ground-based data z.2 the 3pectral
properties of the clacs (e.q., water has unigue vrerfloctance characteristics

SO it ~an often “e digecernerl Qivestly Fram s srecrral cignature). In



supervised classification, the operator assigns specific pirels (training
sites) to particular landcover classes on the basis of ground~based data.
Camputer algorithms are used to analyze the spectral properties of those sets
of pixels and to assign the remaining pixels to landcover classes on the
basis of the statistical similarity of their spectral properties.

Satellite data of all resolutions have been used to generate forest type
maps, from high resolution SPOT and TM land-use maps (e.g., Hopkins et al.
1988, Buchheim et al. 1985, Nelson et al. 1984) to mid resolution MSS maps
(e.g., Beaubien 1979, Dodge and Bryant 1976) to coarse resolution AVHRR maps
(e.g.., Tucker et al. 1985, Norwine and Greegor 1983, Townshend et al. 1987).

Camparisons of the various sensors for classification and mapping accuracy
have shown the superiority of the finer resolution ™ data cver the MSS data
(DeGloria 1984, Williams et al. 1984, Malila 1985, Toll 1985, Hopkins et al.
1988). Toll (1985) found that the improvement in classification of a scene
of rapidly urbanizing Washington, D.C. was due primarily to the better
spectral discrimination of ™ data (especially ™ bands 1, 5, and 7; Fig. 1)
and to a lesser degree to the increase in Quantization of the spectral data
within a band (a raw MSS band value can range from 1-128; a ™ band value can
range from 1-256). Interestingly, Toll found that the increased spatial
resolution of ™ reduced his ability to differentiate land-use classes of the
first order such as urban, forest, grienlture, and vater. This reduction
occurred because the finer resoiution '™ data increased spectral variability
within the piiels of first-order clasge:s =ut e spatial context of rre nixel
was rot incorporated into the classificarion algerithms (2.y., rforested wrhan
areas such as yards =nd -mall narlw were classified as forest rather than

arban).  However, llopkins et il 11288), «ramining forested zreas of



Wisconsin, USA, found the spatial detail of ™ to be advantageous in
classifying second- and third-order forest land-use types such as upland
coniferous forests and central hardwoods. The difference in classification
accuracy lies in the nature of the landcover classes desired: for
classification of a finer, higher order, the higher spatial resolution of ™
is beneficial (Williams end Nelson 1986); for classsification of a coarser,
lower order, ™ is disadvantageous unless the spatial context of a pixel is
incorporated into the classification procecure.

The usefulness of SPOT data in classifying forest types has received mixed
reviews. In én urban study in Athens, Georgia, SPOT data were found to
increase the accuracy of all second- and third-order classifications by about
13 to 20% over that of ™ (Welch 1985): further, these data were suitable for
cartographic mapping at a scale of 1:24,000. SPOT data may be less helpful
for mapping forest types (away fram urban regions) because its reduced
spectral resolution (fewer bands) relative to ™ may obscure vegetation
differences.

AVHRR classifications are useful for maps of large areas and can be
verified with higher resolution images or map data (Schneider 1984). For
example, multitemporal AVHRR data were used to develop a vegetation map of
South America in which 16 vegetation classes were differentiated, several
with accuracy greater than 90% (Townshend et al. 1387).

Mich research has been conducted in an effert to enhance classification
results. Raw zpectral catq may be pre~prececsed priow s clagsification.
Varicus mean or median filters, in which pizels are rezssigned the mean or
median spectral value of *heir surrounding pixels, nzv bhe applied to reduce

.....

intra-class variance while retaining the boundary detail of classified areas




(Atkinson et al. 1985, Cushnie and Atkinson 1985). Raw spectral values are

also sametimes converted to their principal component values via principal

canponents analysis of the entire scene. More scphisticated techniques for

classification include stepwise discriminant analysis (Nelson et al. 1984)

and per-field algorithms (Dean and Hoffer 1982) in which the classification

of a pixel depends not only on its cwn spectral characteristics but also on

those of adjacent pixels.

Recently, classification accuracies have been improved by using a GIS to

integrate digital biogeographical data with satellite sensor data (e.g.,
CERMA, 1985).

For example, topographic variables were integrated with ™ data

to increase the accuracy of classifications of vegetation communities in

Rocky Mountain terrain (Frank 1988). By incorporating topographic variables,

the shadowing effects created by the angle of the sun can be accounted for.

Topo-climatic variables can also provide indirect information about

vegetation cover which can be incorporated directly into classification

algorithms. Other biogeographical variables--soil types, landforms, geology,

or vegetation maps--c:n also be helpful in classifying v providing strata

(e.g., forest-nonforest, cultural-noncultural, or wetland-nomwetland masks)

that allow image classification to be focused on a particular area or

resource of interest.

Using satellite imzgery to classify forest ypes is still ¢ subjective

frocedure and as much oy -rt 35 a sciencs.

vonatheless, the technique has

preven very izeful nou

ot also to agencies that manage

.and resources., Cluscificaticis ternd *c e nore soovrate in flatter terrain

and when the vegetation *~~es are <harply
24 2R Y

Tontrasting, for eyvample,

coniferous versus hardwod or forested versis agriculture. The use nf




multitemporal scenes to capture phenological differences in vegetation often
improves accuracy. In inaccessible parts of the world such as the tropical
and boreal regions, satellite imagery is invaluable in mapping forestland

because often no other current data are available.

Detection of forest chance

Changes in forest cover over time are important because of the role
forests play in the global carbon cycle, in global climatic trends, and in
providing species habitat (Woodwell et al. 1984). Although understanding
forest change is important worldwide, i+ is especially important in the
tropics, where land-use transformation is occurring very rapidly and where
timely ground data are scarce.

The basic methodology for detecting change is ztraighticrvard: two or more
satellite images of the same area, preferably taken at the same phenological
period but in different years, are overlaid to show geographically specific
changes in landcover. In some cases, raw satellite spectral data can be taken
from the two scenes and merged to make a multiple “and ccmbination data set,
which is then classified. Usually, however, the tw: lisges -re classified
separately prior to combining the data: this technique ;=rmits the use of
varying data types such as MSS and ™ or even “istoric creund-hased maps.

By canparing digitized ground-hHased maps of To5ta Rican Sorestland from
1240, 1950, end 1261 and MSS-derived firaet covar maps oL 1977 and 1982,
Tader ond Joyee (1088) found that Torcst rer Dad decruased frem 67 to 1T%
netween 1940 ard 1983 with the most rapid cate of ~learing -etween 1977 and
1983. PFurtiarmore, four of the oleven Costa Flezn life tenes nad disappeared

completely: she Jdry o srapical, the oiot JTRmentire, the moist lower wontane,



and the wet montane. They also demonstrated the clecese relaticnship between
road building and deforestation by cverlaying transportation network maps
with forest cover maps.

Ceforestation in the Amazon basin of Brazil has heen quantified by using
AVHRR band 3 thermal <Jata which, unlike the visible hands, can renetrate the
ubiquitous cloudcover of the region (Tucker et al. 1984, Malingreau and
Tucker 1987). Estimates of deforestation were obtained by using kand 2 to
detect both the fires associated with lines of active deforestation and the
devegetated areas, which are warmer. The studies <f PRondonia, Brazil,
indicate that the deforested area increased from 4200 km® in 1978 to 10,000
km? in 1982 to 27,000 m® in 1985 to over 35,000 km? in 1987 (Malingreau and
Tucker 1987, Malingreau and Tucker 1988, Tucker, personal comm. 1989).

Deforestation rates in Rondonia, Brazil, have also been evaluated using
AVHRR data in combination with selected cloudfree 1976, 1978, and 1981 MSS
scenes of much smaller portions of the region (Nelson and Holben 1986, Nelson
et al. 1987, Woodwell et al. 1987). The spatially precise MSS data revealed
a doubling of deforestation rates hetween the 1976-1978 and 1978-1981
intervals (Woodwell et al. 1987). The MSS data were also used to check the
accuracy of AVHRR band 3 estimates of cleared areas for the entire state of
Rondonia. The estimates appeared reascnably accurate given the constraints on
the satellite data and the laclk of timely ground data. Radar data also holds
good potential Ior 23sessing deforestation in the tropics since radar data
ire rot constained Ly clead cover.  For example, 3tone and Woodwell (1588)
found Shuttle luaging Racar-a [SIN-4) data o Lave the hrightest returns (the

highest signal returns *o roder sensor rosult Srem smooth, deforested areas)

on recently Jeforested ugi:is o unazcnic.
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Although most forest change studies using satcllite data have focused on
deforestation in the tropics, temperate forest changes have also been studied |
because of their importance with regard to soil protection, water retention
during flooding, wildlife habitat, timber resources, and recreation sites.
For example, loss of bottomland forest coincident with upland forest
regereration has been documented in southern Illinois, USA, using ~-lassified
1978 MSS and 1984 TM scenes (Iverson and Risser 1987), as has forest
degeneration in the high-elevation forests in the Greer Mourtains of Vermont
(Vogelmann 1988).

The accuracy of satellite-based studies of forest change in the tropics
are difficult to determine, given the lack of ground-based data for
verification. Nonetheless, the results are valuable because they are often
the only source of timely, regionally consistent informaticn on
deforestation. In temperate regions where ground-based data are often
available (e.g., national forest inventories), sateilite studies are
neverless valuable because they can show the spatial pattern of change, which
most inventories cannot, because they can look at shorter time intervals (2
to 3 years versus 10 or more years for most ground-based survevs), and
cecause the methodologies developed to assess forest cover (or change) over

-arge regions can be validated with the independent inventory data sets (as

in Iverson et al. 1989).

Forest succession.
The spatial and temporal patterns of forest succession can be studied
using spatially referenced wegetation data “rom tvio or more cdates. Transition

Frobabilities of fores: succession pathways in northern Minnesota, USA, were
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calculated using classified MSS scenes frem 1973 and 1983 (Mall et al. 1987).
Transition probabilities of the managed areas differed from those of the
wilderness areas primarily tecause of the influence of logging, which altered
not only the rates of transition but also the possible types of transition.
In a secona study, Walker et al. {1986) successfully used Landsat MSS data in
Austrailian semi-arid eucalypt woodlands to detect stage of seccession based
on structural differences in 0 to 50 year old clearings.

In another forest succecsion study, which utilized both inage processing
and GIS technology, the stability and fate of abandoned pasture patches in a
mosaic of mountainous forest were found to be negatively related to original
patch size and elevation (Graham et al. 1987). This study used 1934
vegetation maps depicting the abandoned pastures and 1984 TM imagery. The
fate of the pastures patches was determined by camparing the 1984 spectral
signature of pixels within the historic boundaries of the abandoned patches
with the spectral signature of pixels just outside the patch boundaries.

Satellite imagery holds considerable promise for determining the rate and
spatial context of succession; however, this use is still evperimental and
not without problems. The accuracy of transition probabilities will depend in
large part on the accuracy of the original classifications. Furthermore,
there are theoretical problems in calculating transition probabilities with

data that have a time interval equal to or greater thin that of the change

»henomena.

Assecsment of stand strictiare

e

Satellite data have “een vvad uith varying Jegrees of success to quantify

spatially cuch forest ctricrira conracterictics aw crown cover, tooe density,



tree diameter, basal area, tree height, tree zge, biomass, and leaf area

index. In general, the technique is to collect spatially-referenced ground
data on the forest structure variable of interest and then to determine the
statistical relationship between the ground-obtained data and the spectral
cata for the same location. Thus far, most studies have used spectral data
generated from airborne sensors such as the thematic mapper simulator (TMS),
which has bands identical to ™, rather than satellite-borine sensors. The
resolution of airborne spectral data is often finer than that of satellite
data. Virtually all studies have focused on coniferous forests, which tend to
be more uniform and more distinguishable fram other vegetation types than are
deciduous forests. Whether the techniques used to relate satellite data to
forest structure in coniferous forests will also be appropriate for
nonconiferous forests is yet to be determined.

Canopy closure in montane, coniferous forests cf California, UsA,
correlated well with the spectral intensity of several TMS bands (r=0.82 to
0.69, n=103) irrespective of forest type (Peterson et al. 1986). Total stand
basal area, however, was poorly related to the spectral data (r < 0.33).
Stratification by forest type improved the spectral relationship with basal
area. The data suggested that the relationship between total basal area and
spectral signature will be strongest in young, low density, =ven-age stands.
In another study of Californian coniferous forests, ™S bands 1, 2, and 3
(analogous to ™ bands 1, 2, and 2) were most strong.ly reiated *o stand basal
area and leaf hiomass (Franklin 1986).

A relatively hich relationship hetween TVS spectral b:nd intensity and
ce2nopy closure (r=0.850, n=32 for band §) was found ‘or the pire-aspen forest

nf Colorado, USA (Zutera 1285), oy applying a regression model of +hig
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relationship to the raw band 5 value of every pixel in the mountainous scene,
Butera generated a map of forest canopy closure. The accuracy of the map was
71%, 74%, and 54% for canopy closures of 0-25%, 25-75%, and 75-100%
respectively.

Spammer et al. (1984) usad a Claésification approach to study the ability
of TMS imagery to differentiate crown clcsure and tree size classes in a fir-
daminated forest in Idaho, USA. They found >60% accuracy in ciassifying crown
closure classes of >70%, 40-69%, -rd 10-39%, with less accuracy oﬁ éites of
very low (<10%) crown closure. Sawtimber and pole size classes were also
classified with 72-87% accuracy. The optimal bands in these analyses were, in
order, 4, 7, 5, and 3.

Again using ™S imagery, researchers have related leaf area index (LAI) of
coniferous forests to spectral barnd intensity (Running et zi. 1986, Peterson
et al. 1987). In these studies, LAT of coniferous forest stands along a
transect across the mountains of Cregon, USA, was strongly related to the
ratio of band 4 to band 3 (r2=.82, n=18)., LAI of these stands ranged from <1
to > 16,

Danson (1987) correlated SPOT data with structural characteristics of pine
forests in England and found highly significent correlations of SPOT band 3
(near infrared) to tree density, diameter at breast height, and tree age but
not tc canopy cover. Wi ad S:der (1987) showed that airborne

Miltipolarization Sumt}ati- “perture Padar (SAR) also may e zed with wcme

success "o wectirate ol srea, Svoo reici, rd total troe Licmass.
An alrvorme, ulued l.cer =ystem, called the Light Detection and Fanging
(LIDAR) system vas 21 @ ow] w0 nredict total <ree volume and creen weight

hlemass of ine nlantitisng in Georgla (Nelcon ot ., 10eR), ey were able




to predict overall tree volume to within 2.6% and mean biomass to within

2.0%, but were not successful at predicting volume or bicmass on a site by

site basis.

Resuits from these studies are eﬁcouraging in that statistically
significant relationships between spectral data and forest structure data
generally do exist. The results are also frustrating, however, because the
relationships are not consistent across studies and are generally too weak to
offer predictive accuracy at a per pixel scale. As a consequence of the
latter weakness, the relationships cannot be used to examine the spatial
patterns of structural attributes. Nonetheless, in some cases the
relationships can be used to accurately determine the mean value of a
structural attribute over a landscape (Iverson et al. 1989). New approaches
such as the incorporation of biog=ographical data, along with additional
research and probable technology development will be necessary before
satellite imagery - forest structure relationships are sufficiently accurate
and robust to be truly useful in large scale inventories or to detect spatial

changes in stand structure.

Assessment of forest damage

The assessment of forest damage is an important use of remote sensing
data. Many of the changes in tree or foliage marThology resulting from stress
czn be detected with remote sensors (Jackson i1E6) . Furthermere, the spectral
signature of stressed trees may indicate it cnly the degree of stress bhut

also the type of stress. For exemple, IS imsgery of damzged red spruce

(Picea rmibens) -~trnds in Vermont shows & lapre raduction in the neavr and

- -
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shortwave-infrared reflectance (bands 4 and 5 respectively} (Rock et al.
1986). The location of highly damaged stands was readily apparent in the
scene if the ratio of these bands was displayed. Field verification of the
image revealed that the folizge of the highly damaged spruce stands was drier
and less dense than that of undamaged stands {Rock et al. 1986, Vogelmann and
Rock 1986). These authors have continued their work with the ™ sensor and
have been successful in assessing forest damage in Vermont and New Hampshire
(Vogelmann and Rock 1988).

Damage produced by insect defoliation has also been successfully assessed
‘rom remotely sensed imagery. This type of damage is easily perceived by
examining scenes of an area before and after defoliation. For example, areas
of heavy gypsy moth defoliation in Pennsylvania, USA, were quite evident in a
foliage difference map created from June 1976 and July 1977 MSS data
(Williams and Stauffer 1379). The key to successful defoliation assessment is
to use scenes that capture the pericd of heaviest defoliation (Dottavio and
Williams 1983).

Spectral imagery is used routinely by forest managers to detect and
measure insect defoliation, although the data often came from airborne rather
than catellite censers. Stress detecticn 7 ‘orests ic still in the research

stage, but results thus far are promising.

Assessment of rhysiological ~arametere

Many physiologics]l s++ritnteg-—anch = Lotegynthesis,
evapotrenspiration, plant maiisis: 1ee respiration, fYurnover of orgenic
carbon, =nd moisture retenticn--ape rolatedd to 1. interaction of solar

radiation and vegerntisn [Toipnllag 1079). As auch, atellite censors, which
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measure the light reflectance of the earth's surface, should potentially be
able to indirectly measure changes in these radiation-mediated physiological
processes. Reflectance measurements should be useful in inferring spatial
and/or temporal variations in photosynthesis and evapotranspiration rates
because the structural and functionél properties of leaves determine the
radiation/interception characteristics of tree canopies (Sellers 1985, Tucker
and Sellers 1986). Spectral data can provide information on the amount of
chlorophyll pigment (visible wavelengths), the projected green leaf density
(near infrared), and the leaf water content of the canopy (shortwave
infrared). The first two can be used to infer potential photosynthesis
although actual photosynthesis will be determined by solar flux, moisture
availability, and other environmental factors operating on the system at the
time (Tucker and Sellers 1986) .

Spectral reflectance data should also be useful in identifying many
important biochemical features of forest canopies because many biochemical
campounds possess unique spectral absorption properties (Waring et al. 1986).
Determination of leaf starch, nitrogen, nrotein, and lignin content should be
feasible from spectral data, although probably not with current satellite
technology (Waring et al. 1966). For example, Spanner et al. (1985) were able
to relate canopy nitrogen content to spectral data taken with the Airborne
“maging Spectrophotcmeter (AIS). Peterson et al. [1988) have extended this
work over several sites to find relationships between nitrcgen, lignin, and
total water content with the AIS spectral signatures., The infrared region of
the electremagnetic spectrum lms Leen cshown to he ecpecially rich in
information about canopy biochemical characteristice.

Zeal water ~ontent =u.d cerecpiently forest stend water relaticas chould
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also be able to be inferred from canopy spectral reflectance sreperties in
the shortwave infrared bands (e.g., ™ bands 5 and 7) (Tucker 1980). In the
field, the higher values of the ratio of the percent reflectance at 1.65 um
to the reflectance at 1.26 um corresponded %o highly water-stressed
vegetation (Reck et al. 1936). Hand—held spectral seinsors .Lave Zeen used to
detect water stress in luffelgrass in Texas, USA (Richarcdeon and Everitt
1987). To our knowledge, current satellite data have not vet been used to
satisfactorily evaluate moisture availability of “orested cahopies.

Mounting evidence suggests that remotely sensed spectral data may become
as successful, if not imore successful, at estimating forest function (e.g.,
photosynthesis or evapotranspiration) than forest structure (e.g., biomass or
leaf area) because of the dynamic nature of the reflectance-physiological
interface (Tucker and Sellers 1986, Kimes et al. 1987). In the future, remote
sensing may be able to detect portending ecosystem shifts by detecting
changes in rates of key physiological processes that reflect basic ecosystem
parameters (e.g., photosynthesis and productivity) (Waring et al. 1986) .
Evidence also suggests that some of these physiological parameters such as
photosynthesis can be estimated without knowledge of species (Aber and Fownes
1985). Detection of ecosystem parameters without identification of species is
necessary to integrate data across landscapes and eventually the globe.

However, examples of satellite detection of physiological precesses of
forested ecosystems are relatively scarce at the present *ime. fanning and
Nemani (1988) found a high relationship between rhotosynthesie,
transpiration, ard hovegrovod primary (rocuctivity as accertiired 277 :in
eccsystem simulation model and the annual integrated normalized difference

vegetation index [NTVI, (aear (-lrared - sl near nfroresd - oLoad) from thy
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AVHRR sensor, Fig 1] over seven sites in the U.S. They found the
relationship to be especially rigorous on sites located at high latitudes
with little seasocnal water stress. Serafini (1987) used diurnal and seasonal
variations in the difference between satellite-derived earth surface
temperature (based on AVHRR data) and air temperature near the surface (as
measured by ground-based, shelter-height sensors). Spatial variation of
evapotranspiration could account for the variation in the derived
differences. Tucker et al. (1986) and Fung et al. (1987) found a high
correlation over a 3 1/2 year period between globally averaged NDVI and
globally-averaged monthly atmospheric CO, concentrations. This relationship
suggests that satellite data can be used to estimate terrestrial
photosynthesis and productivity, since atmospheric CO, varies seasonally
according to the amount of drawdown occurring via photosynthesis. The
intensive studies of the First ISLSCP Field Experiment (FIFE), underway
during 1987 and 1988 on the Konza Prairie, Kansas, are using a large number
of ground, airborne, and satellite sensors to assess the potential to
understand the physiological characteristics of vegetation (especially with
regard to the effect on climate) via remote sensing (Sellers et al. 1988).
Most research, however, that relates spectral data to forest physiological
features has been done using various airborne sensors (Sader 1987) or
portable sensors mounted con platforms or low flying helicopters, Furthermore,
often the sensors have been quite different from the sensors currently
emplcyed on satellites. More refined satellite sensors and much research will
be needed before satellit: spectral data will truly promote a better
uantitative understanding of tiwe temporal and spatial pattern of

shysiological preoperties o the enrth's vegetation,
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Assessment of forest productivity

If satellite sensors could accurately detect forest productivity, they
would provide obvious cost and effort advantages over traditional field
survey methods. Productivity estimates based on catellite data have been
produced with some success for agronomic ecosystems (Olang 1983), wetlands
(Butera et al. 1984, Hardisky et al. 1984), and shrublands (Strong et al.
1985). Productivity assessments of forests using satellite data are rare.
Forest productivity classes in northwestern California, USA, were predicted
with moderate success using a GIS with classified MSS data, topographic data,
and ecological zone data (Fox et al. 1985).

In another study, predictive models of wood mean annual increment of
volume in three regions of the United States (southern Illinois, eastern
Tennessee, and northeast New York) were developed using GIS, ™ data, and
digital biogeographical data on forest productivity and soils, slope, solar
radiation, and/or vegetation type (Cook et al. 1987, Cook et al. 1989). In
general, forest productivity was more accurately predicted with a combination
of ™ and biogeographical variables than with either cata type alone. The
best regression models in each of the three study regions were highly
significant (P < 0.002) but left a considerable amount of he spatial
variance in forest productivity unexplained. Tecause of ‘he eutreme
heterogeneity of forests stands at the 20-m-scare resolution of ™ and
because of the many abiotic and hintic varizbles involved, 1+ ay not he
reasonable to 2rpect a high degree ~f predictability on amall, site-specific
areas (Franklin 1986, Peterson et al. 1286). Fredictability may be improved

oy changing the scale of velorenes to cover ~LTEer Areas or by oovling and/or




stratifying data (Cook et al. 1989, Franklin 1986) .

As a means to scale up to regional levels, Iverson et al. (1988) used the
TM—derived models mentioned previously for the Illinois and Tennessee sites
in cambination with T™M and AVHRR scenes of the same areas to develop
predictive relationships between the much coarser but nore extensive AVHRR
Cata and forest productivity. Maltiple regression was used to develop the
models relating AVHRR spectral data to TM-derived estimates of forest
productivity. The resulting models were then applied to each AVHRR pixel in
the region to develop regional maps of forest productivity. The validity of
these maps was tested by aggregating the AVHRR pixel procuctivity into
county-level productivity estimates and then canparing these county-level
estimates with independently derived county-level forest productivity
estimates from the U.S. Forest Service.

For the 428 counties centered on the southern Illinois region, the
correlation coefficient of the two productivity estimates was 0.72 (P <
0.0001). For the 168 counties centered on the eastern Tennessee region, the
coefficient was 0.52 (P < 0.0001). The lower success in the eastern Tennessee
region was attributed to the more variable lendscapes of counties > 100 km
fram the original TM-AVIRR-forect productivity calibration center. Closer to
the calibration center (within 100 km), the correlation ccefficient was 0.86.
To extend this nethodology of using nested ™1 :nd ~VHFR scenes to scale up
relaticnships ‘»wveen spectral values sreductivity to continental or
global scales will srobably racquire ctrat(“icnrion of the initial calibration
sites by ecological regions such as Fuchlor's (1964) rotential vegetation
“o2oer falley's (108C) scoregions (Tugan 19a5) .

The above rethcdoleyy fur developing saqicic] osotimates of productivity
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differs from most regional-scale remote sensing studies of preductivity which
generally rely solely on AVHRR data. A more comron approach is to use
multiple scenes of AVHRR data to capture the change in a spectral greenness
index over the growing season (Goward et al. 1985, 1987, Tucker et al. 1985,
Shimoda et al. 1986, Townshend and Justice 196€). The most successful index
has been the normalized difference vegetation index (NDVI). For example,
Coward et al. (1987) fourd a high correlation between seasonal changes in
NDVI values and literature estimates of biome oroductivity across 24 North
and South American bicmes. ClHoudhury (1988) also found Nimbus-7 37 GHz SMVR
data highly correlated with estimates of global net primary productivity.
Generally, though, valid satellite-based estimates of productivity or other
ecological parameters across a large area are difficult to obtain because of
the problems with securing ground observations over such large regions

(Curran and Williamson 1986) .

CONCLUSIONS i
The use of satellite data -s an aid in understanding the ecological nature
of forests is an extremely recent and rapidly evolving phencmenon. Although
most forest applications are still in the experimental stage, research
suggests that satellite data will prove extremely useful in extracting
spatial information cn forest ecosystem attributes. Zecauce satellite sensor
data integrate optically over the pivels, they are not as useful as finer
resolution lata if iaformation cn site specific ecological ;arameters s
desired. H-wever, atellite censors are irdispensible if one wishes to
evaluate or monitor large areas. The synoptic quality of wAtellite dates ig

~ s

‘ust kPeginning to ke 2:ploited; ost research lins wnderstasdably fosusad on
[~ -



parameter identification rather than on spatial relations of ecological
parameters. Satellite data provide two main applications to forest ecology:
1) the ability to monitor ecological attributes in inaccessible regions
and/or spatially extensive regions, and 2) the capacity to detect the spatial
ecosystem patterns and processes of forests. Much progress has been made
toward the first application although much is left to be done. The second
application has just begun to be explored.

Forests are fundamental to the healthy functioning of the biosphere. With
the current global climate warming, loss of biodiversity, environmental
degredation, and increased need for forest products (all problems that rely
on forests as a key in the process or mitigation of the precess), it is
imperative that we monitor and understand the forests of this globe.
Synoptic, timely information, which can be provided cnly with satellite data,
is needed to support local, national, and global decision-makers in the
crucial planning efforts designed to preserve the habitability of this planet

for generations to came.
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Figure Legernd

Fig 1. Spectral .und spatial resolution for four common

satellite sensors: IVHRR, MSS, ™ and SPOT. Also
shown s & spectral response curve for typical green

vegetation.
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